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Abstract. This paper develops and applies a space-based strategy for overcoming the general 

problem of deriving the implicit demand for non-market goods. It focuses specifically on 

evaluating one form of environmental quality, distance from EPA-designated environmental 

hazards, via the single-family housing market in the Puget Sound region of Washington State. A 

spatial two-stage hedonic price analysis is used to: (1) estimate the marginal implicit price of 

distance from air release sites, hazardous waste generators, hazardous waste handlers, superfund 

sites, and toxic release sites; and (2) estimate a series of implicit demand functions describing the 

relationship between the price of distance and the quantity consumed. The analysis, which 

represents an important step forward in the valuation of environmental quality, reveals that the 

information needed to identify second-stage demand functions is hidden right in plain sight — 

hanging in the aether of the regional housing market. 

1 



1. Introduction

Over the past several decades, the demand for environmental quality has emerged as one of the 

most powerful forces acting on the economic landscape of the United States and other developed 

nations (see Kahn 2006). But, in spite of its great importance, the value of that commodity 

remains elusive because holistic measurement requires knowledge of a demand function that 

describes the relationship between price and the quantity consumed. The challenge that this 

presents begins with the fact that no distinct market for environmental quality exists, so it can 

only be approached indirectly — ideally, via preferences revealed in markets for larger, 

differentiated commodities like labor and housing. Although it is usually straightforward to 

estimate the marginal implicit prices of the various non-market goods embedded in such markets, 

the function used to do this, called a hedonic price function, is a market clearing function that 

results from interaction between the bid and offer functions of participants on either side of the 

market. Coming up with the value of non-marginal differences in consumption means extending 

hedonic price analysis to a second stage and estimating a demand function wherein price and 

quantity are endogenously determined. The barrier to this is one of information: because the 

underlying first-stage hedonic function is a composite of unique, individual demand and supply, 

the marginal implicit prices it yields are also composites and, for this reason, conventional 

econometric procedures cannot readily be used to identify the second-stage demand function the 

way they can for more traditional commodities. 

This paper responds to the challenge with an analysis that leverages spatial heterogeneity 

in housing attribute prices to expose the demand for one aspect of environmental quality, distance 

from Environmental Protection Agency (EPA) designated environmental hazards. There are three 

specific objectives: (1) to define spatial heterogeneity in the context of housing markets and 

develop a strategy for using it to overcome the general problem of deriving the demand for non-

market goods; (2) to estimate the marginal implicit price of distance from air release sites, 

hazardous waste generators, hazardous waste handlers, superfund sites, and toxic release sites via 

the single-family housing market in the Puget Sound region of Washington State; and (3) to 

estimate a series of implicit demand functions describing the relationship between the price of 

distance from environmental hazards and the quantity consumed. The analysis, which represents 

an important step forward in valuing environmental quality, reveals how the field of regional 

science’s unifying epistemology — namely, that geographic space mediates socioeconomic 

processes — holds a workable solution to what has always been the albatross of two-stage 

hedonic price analysis. 
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2. Background Discussion

2.1 Hedonic Prices and Implicit Markets

Environmental quality is not traded in conventional markets so willingness to pay for it can only 

be estimated, never measured directly (Freeman 2003). Estimation is done either via stated 

preference approaches, such as contingent valuation, or revealed preference approaches, such as 

hedonic price analysis. In the latter case, competition for the right to occupy desirable locations 

— both among and within regions — generates implicit prices in labor and/or housing markets 

that correspond to spatial variation in environmental quality. And, since this process plays out 

across two different levels of geography, there are two corresponding levels of hedonic price 

analysis: (1) interregional, which deals with variation in wages (the price of labor) and housing 

prices among regions; and (2) intraregional, which deals with variation in housing prices within 

regions.1 Although the theory underpinning these two frameworks is more-or-less the same, the 

distinction is an important one because the appropriate spatial lens depends on the nature of the 

environmental commodity in question. For example, the value of sunshine is best measured by 

looking among regions, whereas the value of proximity to neighborhood parks is best measured 

by looking within them. Though both levels of analysis have long been used to evaluate 

environmental quality, it is specifically the intraregional level of analysis that is the focus of this 

paper. 

Rosen (1974) formalized hedonic price analysis as a two-stage process. In the first stage, 

the transacted price of housing is regressed on all of the attributes that matter to it, including its 

features, its neighborhood characteristics, and its location: 

p̃ =α0 +α1 ⋅ zi1 +α2 ⋅ z 2 + ...+α k ⋅ zik +εi . (1)i i

In this equation, p̃ represents the natural logarithm of the sales price of home i; the z s represent i 

measures of various housing attributes; the α s represent estimable parameters; and ε representsi 

a stochastic error term. From this, the marginal implicit price of any attribute, k, for each home, i, 
ˆ ˆis calculated as the product of the estimated parameter and the price of the home:2 π ik =α k ⋅ pi. 

Then, the total implicit expenditure is calculated as the product of the marginal implicit price and 

η ik = π ik ⋅ zik . In the second stage of hedonic price analysis, quantities the quantity of that attribute: ˆ ˆ 

1 See Carruthers and Mundy (2006) for a survey of the two levels of hedonic price analysis.
2 Because equation (1) in semi-log form, marginal implicit price is α̂ k ⋅ p ; if equation (1) were linear, the implicit price i 

α k ; and, if it were in log-log form, the marginal implicit price would be ˆwould be just ˆ α k ⋅ p / z . The calculations that i i

come later in the paper account for the log transform of the dependent variable and, where appropriate, explanatory 
variables. 
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of the attributes of interest are regressed on their estimated marginal implicit prices, which are 

endogenous, plus a set of relevant demand shifters: 

ˆq̃ik = β0 +δik ⋅ π ik + β1 ⋅ xi1 + ...+ βs ⋅ xis +υi . (2) 

ˆHere, q̃ik represents the natural logarithm of the quantity of attribute k consumed via home i; π ik 
represents its estimated marginal implicit price; the x s represent s number of demand shifters; δik 
and the β s represent estimable parameters on the endogenous variable and explanatory variables, 

respectively; and υ  represents a stochastic error term.i

Because the second-stage implicit demand function contains an endogenous variable 
ˆ( π ik ) it must be estimated via an appropriate econometric procedure. Rosen’s (1974) original 

formalization suggested that the issue amounted to only a “garden variety identification problem” 

(page 50), so it could easily be resolved via an instrumental variables estimator, like two stage 

least squares (2SLS). Unfortunately, as demonstrated by Brown and Rosen (1982), the truth is not 

so convenient because, in hedonic price analysis, each revealed implicit price function results 

from a unique interaction between an individual demand function and an individual supply 

function. Like the hedonic price function it comes from, the implicit price function is really a 

reduced form composite of both unique, individual demand and unique, individual supply that 

does not contain the kind of information needed to identify a structural demand function. Though 

there are multiple ways of overcoming this problem — including by imposing certain functional 

form restrictions (Chattopadhyay 1999) — the most widely accepted strategy is to use spatially 

distinct housing market segments having different prices for the same attributes to identify a 

demand function for the entire market (Palmquist 1984; Bartik 1987; Epple 1987). While the 

parameter estimates of demand functions generated in this way are spatially invariant, it is the 

spatial variation in the underlying marginal implicit price estimates that are critical to identifying 

the structural equation. 

Over the years, variations on the first stage of hedonic price analysis have been used to 

examine many general forms of environmental quality (see Boyle and Kiel 2001 and Kiel 2006 

for in-depth reviews), plus a number of specific environmental hazards (for example, Kohlhase 

1991; Kiel and McClain 1995; Clark et al 1997; Hite 1998; Clark and Allison 1999; Dale et al 

1999; Hite et al 2001; Bae et al 2007; Brasington and Hite 2008). And, recently, there has been a 

revived interest in the second stage of hedonic price analysis, which has been used to evaluate the 

demand for air quality (Chattopadhyay 1999; Zabel and Kiel 2000), neighborhood and school 

quality (Cheshire and Sheppard 1995, 1998, 2004; Black 1999; Brasington 2000, 2003), and 

distance from environmental hazards similar to those that are of concern here (Brasington and 
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Hite 2005). In addition to the growing commitment to second-stage analysis, there have been 

important advances in first-stage analysis, including gains made by studies that use spatial 

econometric methods to evaluate environmental quality (Kim et al 2003; Theebe 2004; Anselin 

and LeGallo 2006). Still other spatial analyses — beginning with work by Can (1990, 1992) — 

have found that there is a high degree of heterogeneity in housing attribute prices (Mulligan et al 

2002; Fik et al 2003; Bitter et al 2007). This last category of research, which is addressed in the 

next section, points to a potential solution to the identification problem that has long plagued the 

second stage of hedonic price analysis. 

2.2. Market Segmentation and Spatial Heterogeneity in Housing Attribute Prices

At about the same time that Rosen (1974) formalized the two stages of hedonic price analysis, 

Straszheim (1974) cautioned that, due to market segmentation, it is not always be appropriate to 

assume that the implicit prices of housing attributes remain the same across geographic space — 

even within a single region. By this reasoning, the regional housing market is composed of an 

interconnected set of many localized submarkets having idiosyncratic differences in the structure 

of supply and/or demand and, consequently, unique schedules of attribute prices (Michaels and 

Smith 1990). But, in order for spatially distinct market segments to materialize, it must also be 

the case that buyers from one submarket do not normally participate in the other submarkets — 

for reasons having to do with barriers to entry, imperfect information,3 and/or some other 

restriction on arbitrage opportunities. Under such circumstances, which are rather typical of 

complex regional housing markets, the implicit prices of housing attributes may vary from 

submarket-to-submarket, or even from household-to-household. In short, there is good reason to 

suspect upfront that there is considerable heterogeneity embedded in the regional housing market 

and that, if so, it can be exposed and put to use for identifying second-stage implicit demand 

functions. 

One illustration of the potential for deriving demand parameters within an individual 

market is an analysis by Bajari and Kahn (2005) that uses a nonparametric estimation strategy to 

explain household willingness to pay for various housing attributes. The procedure involves three 

steps: (1) estimating a (nonparametric) first-stage hedonic price function; (2) using the error term 

3 While the focus of the discussion is on heterogeneity, it is worth pointing out that some researchers have focused on 
how the nature of information influences housing markets: Kask and Maani (1992) find that both differences between 
the objective and subjective probabilities associated with the risk of environmental hazards and incomplete information 
about those probabilities affect the hedonic price function; Yavas and Yang (1995) find evidence of systematic 
inefficiencies due to incomplete information in the bargaining process; and Hite (1998) finds that the quality of 
information about environmental quality is what, in fact, determines whether or not it enters the hedonic price function 
in the first place. 
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from that function to recover household-level preferences; and (3) estimating preferences as a 

function of household characteristics. Although the analysis does not estimate implicit demand 

functions4 and, therefore, does not face the same type of endogeneity problem encountered here, 

it is nonetheless intriguing because it uses a random coefficients approach to derive estimates of 

the impact of individual preference shocks on willingness to pay. The results are used to draw 

conclusions about how housing demand influences nature of racial segregation in several regions 

and they reveal, among other things, that white households have stronger preferences than black 

households for low-density housing. 

Beyond this, the realization that substantial heterogeneity may be embedded in individual 

regional housing markets has impacted hedonic research by motivating a number of analyses 

aimed at delineating and measuring differences among submarkets within regional housing 

markets (Goodman and Thibodeau 1998, 2003; Brasington 2000, 2001, 2002). In an early 

taxonomy, Goodman (1981) argued that heterogeneous demand functions are bound to interact 

with inelastic short-run supply functions to produce spatially distinct schedules of housing 

attribute prices that may not converge on a common regional value until the (unobservable) long-

run, if ever. Another trend in hedonic price analysis is to allow for the possibility that housing 

attribute prices may not just be segmented, but are actually variable and even quite volatile, 

across regional housing markets. In other words, at any given spot, there exists a potentially 

unique housing attribute price schedule that can be estimated via spatial methods. This approach 

began with work by Can (1990, 1992), who applied Casetti’s (1972) expansion method of model 

building by interacting an index of neighborhood quality with housing attributes to produce 

implicit price estimates that depend on location itself. Subsequent research has gone further still, 

by interacting Cartesian coordinates with housing attributes to generate a unique “location value 

signature” (Fik et al 2003, page 643) for every home involved in the analysis.5 Once estimated, 

location value signatures expose multiple housing attribute price surfaces within a single housing 

4 Bajari and Kahn (2005) use the PUMS samples of the 1990 Census of Population and Housing to derive willingness 
to pay (WTP) functions for housing attributes, and, since they also know the characteristics of the household, they 
relate changes in WTP to those household characteristics. Their goal is to examine the role of household-level taste 
differences on WTP and they employ a random coefficients approach to derive household-specific taste shifters. 
However, they do not estimate an implicit demand function since WTP is not regressed on quantity. In contrast, the 
goal of the present analysis is to address the unique endogeneity issue that exists in the two-stage hedonic model so that 
implicit demand functions for environmental quality can be derived.
5 Clapp (2001) and others have developed similar, semi-parametric estimators for hedonic price models that also 
involve the use of a property’s Cartesian coordinates. These approaches are a lot like the expansion method and 
geographically weighted regression (GWR) — the approach used in this paper — in the sense that they are designed to 
account for the influence of location in-and-of itself. The main difference is that these approaches estimate parameters 
on location-specific variables (Cartesian coordinates) whereas in GWR, parameters related to housing attributes vary 
by location. 
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market — surfaces that are formed by otherwise unobserved factors. (Mulligan et al 2002; Fik et 

al 2003; Bitter et al 2007). 

Critically, the heterogeneity that gives rise to these surfaces is non-stochastic because 

housing markets are subject to a great deal of spatial dependence (Kim et al 2003; Theebe 2004; 

Anselin and LeGallo 2006; Brasington and Hite 2005). On the supply side, proximate homes tend 

to be similar and, on the demand side, homebuyers regularly emulate one another’s behavior. The 

result is a process of spatial interaction among market participants, which suggests that, at a 

minimum, equation (1) should be modified to include a spatial lag of its dependent variable 

(Anselin 1988; Anselin and Bera 1998): 

p̃i =φ0 + λ ⋅Wij ⋅ p̃ +φ1 ⋅ zi1 +φ2 ⋅ z 2 + ...+φk ⋅ zik +ψ i . (3)i

The notation in this equation is essentially the same as before, except that the φ s stand in for the 

α s; ψ i replaces ε as the stochastic error term; Wij ⋅ p̃ represents the spatial lag of the dependent i 

variable ( Wij , j ≠ i, is a row-standardized n × n spatial weights matrix describing the geographic 

arrangement of transactions) giving the average sales price of proximate homes; and λ is an 

estimable spatial autoregressive parameter. Because equation (3) indicates that the sales prices of 

nearby homes influence each other, Wij ⋅ p̃ is endogenous to p̃ and, so, the function cannot be i 

properly estimated using ordinary least squares (OLS). A viable alternative is a spatial two-stage 

least squares (S2SLS) strategy developed by Kelejian and Prucha (1998), which involves first 

regressing the spatially lagged dependent variable on all of the explanatory variables plus spatial 

lags of those same variables to produce predicted values, and then using the predicted values in 

place of the actual values in equation (3). Like the alternative, maximum likelihood estimation, 

S2SLS yields efficient, unbiased parameter estimates, even in the presence of spatial error 

dependence (Das et al 2003). 

In practice, the spatial lag in equation (3) acts something like a flexible fixed effect, 

absorbing the type of spatial correlation in housing prices that arises from various forms of 

unobserved spatial heterogeneity.6 But, while this helps to achieve proper first-stage estimates, it 

does nothing to address the identification problem that arises in the second stage of hedonic price 

analysis. An alternative approach — Fotheringham et al’s (2002) geographically weighted 

regression (GWR) procedure — opens the door to second-stage estimation: 

p̃i = γ i0 +γ i1 ⋅ zi1 +γ i2 ⋅ z 2 + ...+γ ik ⋅ zik + τ i . (4)i

6 In an analysis of school quality, which varies by school district, Black (1999) used a fixed effects approach to capture 
unobserved factors associated with the neighborhood conditions that spill across the boundaries of school districts. The 
spatially lagged dependent variable contained in equation (3) captures exactly this kind of unobserved heterogeneity, by 
making it explicit to the first-stage hedonic price function. 
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The notation here is again the same as in equation (1), except that the γ s represent estimable 

parameters specific to each home, i, located at spot {u, v} and τ represents the stochastic error i 

term. Just as before, the marginal implicit price of a given housing attribute is calculated as the 

ˆproduct of the estimated location-specific parameter and the price of the home, or π ik = γ̂ ik ⋅ pi , 

and the total implicit expenditure is calculated as the product of the marginal implicit price and 

the quantity of that attribute, or η̂ ik = γ̂ ik ⋅ zik . The difference is that the estimates that go into the 

calculation, γ̂ ik , differ from home-to-home, so the variable is the product a variable parameter and 

a variable, not a constant parameter and a variable. 

Equation (4) is complicated to estimate and requires the use of software developed 

especially for that purpose (Fotheringham et al 2003) but, even so, the procedure is really just a 

logical extension of the familiar OLS estimator. In plain terms, GWR fits a separate OLS 

regression for each-and-every observation in the dataset and discounts information from other 

observations by distance via a spatial weights matrix, so that closer observations have a greater 

influence on the local solution. Also, each individual regression generally includes only a subset 

of the dataset, so the local sample size is something smaller than the total number of available 

observations. Put differently, GWR involves running the same regression over-and-over again — 

once for every observation in the dataset — but with a subset of all observations that is spatially 

centered on each individual observation, and in a way that discounts the value placed on included 

observations by how far they are from the spot where the regression is centered. The output of 

GWR is voluminous: a total of n observations ⋅ k parameters, so 100,000 parameters (plus 

corresponding standard errors and t-statistics) for a model having 10,000 observations, nine 

explanatory variables, and a constant.7 See Fotheringham et al (2002) for an in-depth explanation 

and Kestens et al (2006), Bitter et al (2007), and Wheeler and Calder (2007) for applications of 

GWR to the first stage of hedonic price analysis. 

Coming back to the matter at hand, GWR is a procedure for modeling spatial 

heterogeneity and, because of this, it is ideal for accommodating the kind of market segmentation 

identified by Straszheim (1974) and others. Although it may be possible to delineate certain kinds 

of submarkets upfront, either by way of assumption or by consulting with market participants, in 

practice, it seems unlikely that actual submarkets would ever follow rigid boundaries or that they 

would necessarily be congruent for all housing attributes. A more plausible supposition is that 

submarkets for housing attributes bleed across geographic space in various ways, waxing and 

7 On the face of it, GWR seems to produce many more parameters than there are observations — but this is not actually 
the case because the estimates are the accumulation of n separate regressions. In the example given in the text, the 
100,000 parameters result from estimating the same 10 parameters 10,000 times and then pulling all of the estimates 
together. 
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waning in a manner relevant to the specific behavioral mechanisms that generate them. GWR 

models the heterogeneity of housing attribute prices — however organic and different from one 

another they may be — and retains it as a form of information that can, in turn, be used to 

estimate the demand for those attributes. This is fundamental because, if the marginal implicit 

prices estimated in the first stage of hedonic price analysis vary by location, then it follows that 

the housing market is spatially segmented in a way that allows the estimates from different 

locations to be pooled in the second stage to estimate a market-wide demand function. This 

space-based strategy is proposed as a general solution to the long-standing problem of deriving 

the implicit demand for non-market goods. 

3. Empirical Analysis

3.1 Data, Setting, and Modeling Framework

The empirical analysis is set in King County, Washington, the location of Seattle and the heart of 

the Puget Sound region. The data, which originates mainly from the King County Assessor, 

includes 29,165 transactions for single-family homes that took place during 2004 — essentially 

all such arms-length transactions from that year. Once collected, the sales were entered into a 

geographic information system and linked to parcel data, also from the King County Assessor, 

plus spatial data from other relevant sources to create a variety of number of neighborhood- and 

distance-based metrics. Figure 1 displays surface trends interpolated8 from the natural logarithm 

of the sales prices of the 29,165 homes and Table 1 lists the source of, and descriptive statistics 

for, all variables involved in the analysis. 

In 2004, King County was home to over 1.75 million people living in more than 50 

different jurisdictions. Within the region, there are many readily apparent submarkets but there is 

also considerable crossover between them because the region as a whole is well integrated and 

faces little of the kind of socioeconomic segregation that commonly bifurcates housing markets 

of large cities. This is not to say that income polarization and its attendant residential sorting do 

not exist in the Puget Sound, just that they do not exist at the same extremes as they do in many 

other American metropolitan areas. Instead, the region’s housing market tends to be sorted more 

by preference: for example, some residents prefer the high-density, mixed-use neighborhoods of 

Seattle and others prefer the low-density, predominantly residential neighborhoods of the eastern 

8 The surface trends were generated via an inverse distance weighting scheme, which is the simplest method of 
interpolating a surface from point data — it estimates values between observations i and j as a weighted average, where 
the weight given to each observation is determined by a standard distance decay function: f (dij ) = 1/ dij 

2 (Longley et al 
2001). 
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suburbs and other outlying areas.9 Moreover, the Puget Sound region in general, and Seattle — 

the so-called “Emerald City” — in particular, are famous worldwide for being among the nicest 

places to live and own housing in the United States. Views of the Cascade and Olympic mountain 

ranges are typical and so are views of the Sound, Lake Union, Lake Washington, the Ship Canal, 

and many other smaller water bodies. With its large and dynamic housing market and its many 

opportunities to consume environmental quality, King County is an ideal setting for evaluating 

the demand for that commodity. 

As shown in each of the first-stage hedonic price functions — that is, in equations (1), 

(3), and (4) — the price of housing depends on a vector of housing attributes, say z , that 

describes the home itself, its neighborhood, and its location. In terms of model construction, the 

exact set of variables that fill out this vector depends, crucially, on the geographic scope of the 

analysis because different things matter within different spatial frames of reference. That is, 

constructing a model for a specific housing submarket is a different exercise than constructing a 

model for all of the regional market, which is what is of interest here. 

With this in mind, the process of model construction led to the following nine categories 

of explanatory variables, some of which are captured by a lone variable: (1) lot size, measured as 

the square footage of the of the home’s site; (2) structure, measured as the square footage of 

living space, its age in linear and quadratic form, and its number of fireplaces; (3) grade, a 

qualitative evaluation made by the assessor that rates the home as being of “below average,” 

“average,” “good,” “better,” “very good,” “excellent,” “luxury,” or “mansion” quality; (4) 

condition, another qualitative evaluation made by the assessor that rates the home as being in 

“below average,” “average,” “good,” or “very good” shape; (5) amenities, measured as whether 

or not the home has a view of any kind, whether or not it is subject to some sort of a nuisance, 

like traffic noise, and the number of linear feet of waterfront its site has, if any; (6) neighborhood, 

measured as the property tax rate, which is calculated as the ratio of the previous year’s property 

tax bill to the assessed value, school quality, which is calculated as the average percentage of 

students achieving success in state aptitude tests for mathematics, reading, science, and writing, 

plus, defined at the census tract level, median household income and housing density, which is 

calculated as housing units per acre; (7) location, measured as distance from downtown Seattle, 

the average commute time to work in the census tract, distance from the nearest arterial, whether 

or not the home is located outside of the Puget Sound’s urban growth area, and distance from the 

nearest point on the growth area’s boundary; (8) environmental hazards, measured as the distance 

from the nearest air release site, hazardous waste generator, hazardous waste handler, superfund 

9 Charles Tiebout chose to live in Seattle itself, in a neighborhood adjacent to the University of Washington. 
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site; and toxic release site; and (9) time, measured as the number of the month in which the home 

was sold.10 Together, these 32 variables and a constant form the vector of attributes that explains 

the sales price of single-family housing in King County’s portion of the Puget Sound region.11 

The expected sign of each variable involved in the first-stage hedonic price functions is listed in 

the rightmost column of Table 1. 

Last, before getting to the analysis, it is necessary to provide some basic details about the 

five EPA designated environmental hazards that are the center of this analysis: (1) air release sites 

(n = 287) are fixed sources of air pollution that are contained in the Aerometric Information 

Retrieval System; (2) hazardous waste generators (n = 2,094) are waste-producing facilities that 

are contained in the Resource Conservation and Recovery Information System; (3) hazardous 

waste handlers (n = 4,559) are waste-handling facilities (exclusive of hazardous waste generators) 

that are contained in the Resource Conservation and Recovery Information System; (4) superfund 

sites (n = 5) are contaminated sites prioritized for cleanup that are contained in the 

Comprehensive Environmental Response, Compensation, and Liability Information System; and 

(5) toxic release sites (n = 281) are manufactures of toxic chemicals dangerous enough to pose 

severe environmental and, in certain cases, public health threats, that are contained in the Toxics 

Release Inventory.12 All such sites — which range from everyday-type land uses, like drycleaners 

and gas stations, to highly stigmatized sites hosting heavy industrial activities13 — located in 

King County or within five miles of its borders as of 2002, two years prior to the housing 

transactions, are included in the analysis. Distance is the most common way of measuring the 

presence of noxious land uses in hedonic price analysis and it is used here because of its ability to 

capture both the real and perceived levels of disamenity and/or risk associated with the hazards 

(see Clark and Allison 1999). 

3.2 First-stage Hedonic Price Function — OLS and S2SLS Estimates

The purpose of this step of the analysis is to create a backdrop for the ensuing GWR estimation of 

the first-stage hedonic price function shown in equation (4) by estimating the more-familiar OLS 

An alternative time specification — which yielded essentially identical results — employed monthly dummy 
variables. The continuous monthly variable was used because the Seattle region experienced monotonic growth in 
home prices during 2004.
11 This specification is very similar, though not identical to, a specification developed independently by Bae at al (2007) 
for a hedonic analysis also focused on the central Puget Sound region.
12 For an overview of each and access to the same data used here, see: http://www.epa.gov/enviro/html/airs/index.html
for air release sites; http://www.epa.gov/epaoswer/hazwaste/data/index.htm for hazardous waste generators and 
hazardous waste handlers; http://www.epa.gov/enviro/html/cerclis/index.html for superfund sites; and 
http://www.epa.gov/enviro/html/tris/index.html for toxic release sites. 
13 Some toxic release sites are also air release sites but these categories were not made mutually exclusive in order to 
account for the compounding influence that the two types of designation may have. Also note that one of the superfund 
sites is the entire Duwamish River, which extends from Portage Bay into the industrial Southside of Seattle. 

11 
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and S2SLS variants shown in equations (1) and (3). Although the main substance of the analysis 

lies in the GWR estimates and the second-stage implicit demand functions they facilitate, the so-

called “global” estimates outlined here provide a touchstone for what follows by helping to 

establish the specification and by demonstrating that the estimates do not vary wildly due to some 

kind of omitted spatial variable bias. 

The left-hand panel of Table 2 lists OLS estimates corresponding to equation (1). Every 

explanatory variable carries its expected sign (if it was anticipated in advance) and all are 

statistically significant — most at well over a 99% level of confidence. Overall, the vector z 

influences the sales price of housing in the Puget Sound region according to the expectations 

expressed in Table 1. Furthermore, the adjusted R2 is 0.83, indicating that the equation does an 

excellent job of explaining the cross-sectional variation in the sales price of single-family 

housing. Next, the right-hand panel of Table 2 lists the S2SLS estimates, corresponding to 

equation (3), wherein the spatial lag of the dependent variable is the average price paid in the four 

nearest transactions.14 The autoregressive term is positive and highly significant, which shows 

that the sales prices of proximate homes are strongly correlated with one another, and its 

inclusion in the equation raises the adjusted R2 slightly, to 0.85. The original 32 explanatory 

variables all have the same signs as before and, except for the variable indicating whether or not 

the home is located outside of the Puget Sound’s urban growth area and distance from hazardous 

waste handlers, they all remain statistically significant at a 99% or greater confidence level. Most 

important, a comparison of the two models reveals that the OLS and S2SLS estimates, the latter 

of which account for unobserved neighborhood effects and other potentially omitted spatial 

variables, remain broadly consistent: the sign patterns on, and relative magnitudes of, the various 

explanatory variables are essentially the same. Even so, the Akaike Information Criterion (AIC) 

statistic, which provides a basis for discriminating among alternative models (Kennedy 1998), 

shows that the spatial variant of the hedonic price function is preferable to its aspatial counterpart. 

The next issue — the fine point of the entire matter — is to ascertain whether or not the global 

estimates in reality vary across geographic space. 

3.3. First-stage Hedonic Price Function — GWR Estimates

As explained, GWR involves estimating the same regression repeatedly — once for every 

observation in the dataset — but with a subset of all observations that differs by location, and in a 

way that discounts the weight placed on included observations by their distance from the spot 

14 All spatially lagged variables were generated in GeoDa (see Anselin et al. 2006), and then imported into EViews,
where the OLS, STSLS, and 2SLS equations described in this paper were estimated. 
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where the individual regression is centered. The technique, which is computationally intensive, 

produces output consisting of a huge total of n ⋅ k parameters — so, in this case, 962,445 (or 

29,165 ⋅ 33) location-specific estimates. By placing greater weight on local activity and less 

weight on more distant activity in the first-stage hedonic function, GWR enables spatial 

heterogeneity in the Puget Sound’s housing market to be observed and modeled directly, and 

thereby facilitates identification of second-stage implicit demand functions. 

Before discussing the estimates, a remaining aspect of the GWR procedure, the 

determination of the appropriate spatial bandwidth, requires some explanation because it can 

affect the results. Two options are available: (1) a fixed spatial bandwidth, which uses all 

observations, no matter how few or how many, located within a constant radius of the regression 

spot, so the sample size varies by location; and (2) an adaptive spatial bandwidth, which uses a 

constant number of observations, no matter how close or how far away they are from the 

regression spot, so the sample size does not vary by location. Compounding this choice, the GWR 

software can be used to find a statistically “optimal” bandwidth or it will let the user supply a 

predetermined bandwidth. Various combinations of these alternatives were explored for the 

purposes of this research and, in the end, an adaptive spatial bandwidth encompassing a constant 

70% of the dataset — so 20,416 location-specific observations were used to generate the 

estimates.15 

The GWR estimation results, which correspond to equation (4), are displayed in Table 3. 

Only parameters having a corresponding t-value greater than or equal to 1.96 are considered 

statistically significant — that is, estimates significant at a minimum of a 95% level of 

confidence16 — so each panel registers the percentage of significant location-specific parameters, 

plus the minimum, maximum, mean, median, and standard deviation of those parameters for all 

of the explanatory variables. The majority of the estimates are significant 100% of the time and, 

for the few that do not meet that mark, the rate of significance is still high. Distance from the 

nearest hazardous waste handler, the most innocuous of the five environmental hazards, registers 

the lowest rate of significance, 52%. The adjusted R2 and AIC statistic of the GWR model are 

0.83 and –3.46, respectively, and both statistics are comparable to those produced by the OLS and 

S2SLS versions of the model. Finally, Figure 2, a map of surface trends interpolated from the 

GWR error terms, shows that the error terms exhibit little or none of the kind of positive spatial 

Models involving 50%, 60%, and 80% of all available transactions were also estimated for the purpose of 
comparison, and these were all similar to the model involving 70%.
16 This is a conservative approach because the sign of most parameter estimates have was anticipated in advance and 
ended up having the anticipated sign — so, in fact, the t-value = 1.96 benchmark is at a 97.5% level of confidence. 
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autocorrelation commonly observed in the error terms of hedonic price functions estimated via 

OLS (Fotheringham et al 2002). 

Because the parameters were estimated using a wide spatial bandwidth — again, the 

nearest 20,416 observations are included in each of the 29,165 location-specific regressions — 

they are quite smooth, but they nonetheless vary appreciably across geographic space. One 

variable that stands out in this regard is neighborhood density, which now breaks in both 

directions, from a minimum of –0.013430 to a maximum of 0.007248. Other things being equal, 

in some locations, density raises the price of housing and, in other locations, it lowers the price of 

housing — a finding that lines up well with other hedonic research that has uncovered distinct 

submarkets for urban form (Song and Knaap 2003; 2004). Figure 3, which shows surface trends 

interpolated from the location-specific density parameter estimates, illustrates that the pattern is 

systematic: it reflects the impact of households who value high-density, mixed-use neighborhoods 

bidding up the price of housing for that attribute in Seattle and its immediate vicinity and, 

conversely, the impact households who value low-density, predominantly residential 

neighborhoods bidding down the price of housing for that attribute in the region’s eastern 

suburbs.17 Although all of the other parameter estimates retain the same general sign pattern as 

their global counterparts, the descriptive statistics listed in Table 3 show that they are generally 

heterogeneous, especially in the case of variables that are spatial in nature, like commute time and 

distance from the five environmental hazards. 

Table 4, which lists the mean values and standard deviations of the estimated marginal 

implicit price of, and total implicit expenditure on, each housing attribute, provides a more 

qualitative look at the estimation results. (For these calculations, in cases where the location-

specific parameter is not statistically significant, the marginal implicit price was taken to be zero 

because insignificance means, after all, that the variable has no influence on sales price.) To cite 

some interesting examples, the transactions reflect, on average, marginal implicit prices of about: 

$0.70 per square foot of lot size; $64 per square foot of living space; $53,500 for a view; $450 per 

percentage point of school quality; –$3,500 per additional minute of commute time; and $13 per 

foot of distance from the nearest arterial. This translates into, on average, total implicit 

expenditures of about: $8,400 on lot size; $163,000 on living space; $10,600 on views; $27,400 

on school quality; –$84,400 on commute time; $4,100 on distance from the nearest arterial. Each 

of these examples seems reasonable. 

17 To the authors, who know the Puget Sound region well, this result serves as a conformation that the GWR parameter 
estimates reflect true patterns of spatial heterogeneity. 

14 



€

Returning to Table 3, because sales price and the distances from the five environmental 

hazards are all expressed in natural log form, the distance parameters are elasticities. On average, 

these elasticities reveal that the influence of this form of environmental quality in the first-stage 

hedonic price function is ordered as follows: superfund sites (0.062731) > toxic release sites 

(0.018846) > air release sites (0.016356) > hazardous waste generators (0.014780) > hazardous 

waste handlers (0.006310). Table 4 shows the average estimated marginal implicit prices of 

distance from the hazards: $1.19 for an additional foot of distance from the nearest air release 

site; $3.04 for an additional foot of distance from the nearest hazardous waste generator; $0.99 

for an additional foot of distance from the nearest hazardous waste handler; $0.90 for an 

additional foot of distance from the nearest superfund site; and $0.79 for an additional foot of 

distance from the nearest toxic release site.18 The table also shows the average estimated total 

implicit expenditures on distance — that is, the average of implicit price times distance — from 

the hazards: $5,360 on distance from the nearest air release site; $5,758 on distance from the 

nearest hazardous waste generator; $1,070 on distance from the nearest hazardous waste handler; 

$24,686 on distance from the nearest superfund site; and $5,733 on distance from the nearest 

toxic release site. 

Surface trends interpolated from the 29,165 location-specific marginal implicit prices of 

distance from the five environmental hazards are shown in Figures 4 – 8. These maps are of π̂ ik , 

the values required for estimating the second-stage demand functions, and they illustrate exactly 

where and how the facilities have impacted King County’s single-family housing market. In some 

parts of the region, which have been left white, air release sites, hazardous waste handlers, and 

toxic release sites have had no effect at all but, overall, the influence of the facilities is wide-

ranging. A striking feature of the maps is that the marginal implicit prices of distance from the 

hazards are all spatially incongruent — the patterns of impact are completely different across the 

five types of facilities, and even from place-to-place within each type. This latter finding is 

consistent with an analysis of superfund sites by Kiel and Williams (2007), which found that the 

impact on housing markets varies greatly from site-to-site. Also, the patterns of impact illustrate 

why homes located far from the environmental hazards do not necessarily end up with large total 

implicit expenditures on distance: even though the amount of distance consumed is large for more 

distant homes, the marginal implicit price of distance at those locations is very small, so the 

product of the two can also be small. 

18 These estimates are average prices per foot of distance across all distance consumed and that, because of diminishing 
marginal utility, the first foot of distance from an environmental hazard (or anything else) is far more expensive than, 
say, the 40,000th foot. 

15 



€

€

€

€

€

€

€

€

€ € €

€ €

Recall now that it is possible to estimate second-stage implicit demand functions for 

environmental quality if spatially segmented submarkets having separate hedonic price schedules 

for the identical attributes are available. A lone hedonic price function cannot be used to do this 

because it is a composite of unique, individual supply and demand and, so, does not contain the 

information needed to identify the second-stage function. Table 4 reveals that the marginal 

implicit price of, and total implicit expenditure on, many of the housing attributes included in the 

first-stage function have considerable range, but this, while promising, is not in-and-of-itself 

evidence of spatially segmented submarkets. What is needed in order to confirm the presence of 

segmentation is a test of the null hypothesis that there is no spatial heterogeneity in the underlying 

GWR parameter estimates. More specifically, the test — an analysis of variance (ANOVA) test 

crafted by Brundson et al (1999) — is: 

γ i γ iH0 : ∂
ˆ 

= 0 and ∂
ˆ 

= 0 ∀i 
∂u ∂v 

against 

HA : ∂γ̂ i ≠ 0 and ∂γ̂ i ≠ 0 ∀i 
∂u ∂v 

where, following the notation in equation (4), the γ̂  s represent estimated parameters specific to 

each home, i, located at spot {u, v}. The bottom panel of Table 3 lists the results of the ANOVA 

comparing the residuals from equation (1), the OLS model, to the residuals of equation (4), the 

GWR model. The pseudo F-statistic that the test yields is 48.05, a value far greater than the value 

needed to reject the null hypothesis of no spatial heterogeneity in the parameter estimates at a 

99% level of confidence.19 

Before moving on, a qualitative evaluation of the spatially segmented housing attribute 

submarkets confirmed by the ANOVA test is obtained by decomposing the variance of each of 

the total implicit expenditures ( η̂ ik ) listed in Table 4 in a manner described by Ali et al (2007): 
2 2var( ̂  η ik /∂zk ) ⋅ var(zk ) + (∂η̂ ik /∂ ˆ π ik ) (5)

π

η ik ) = (∂ ˆ π ik ) ⋅ var( ˆ 

ik ,zk ) ⋅ (∂ ˆ η ik /∂ ˆ+ 2 ⋅ cov( ˆ η ik /∂zk ) ⋅ (∂ ˆ π ik ). 

2ˆIn this formula, the partial derivative in the first term is the mean of π ik ; the partial derivative in 
2the second term is the mean of zk ; and the partial derivatives in the third term are the means of 

ˆ η ik that is attributable to: π ik and zk . The terms themselves express the share of the variance in ˆ 

ˆ(1) spatial variation in zk , the attributes; (2) spatial variation in π ik , the marginal implicit prices; 

19 This test is conceptually the same as comparing two OLS models via an F-statistic derived from their sum of squared 
errors (SSE), and it is also similar to a Chow test, which can be used to compare constrained and unconstrained 
regressions when two or more spatially separated market areas, like metropolitan areas, are used (see Brasington and 
Hite 2005) instead of a single market area. 
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and (3) the covariance of π̂ ik and zk .
20 The results of the spatial decomposition, listed in Table 5, 

are compelling because they show that, for attributes that are spatial in nature, most all of the 

variance in total implicit expenditure is owed to variation in the marginal implicit price, and not 

variation in the quantity consumed — especially for distance from the five environmental 

hazards. Because of this heterogeneity, formally tested by the ANOVA, the information needed to 

identify the second-stage implicit demand functions is available, hanging in the aether of the 

regional housing market.21 

3.4 Second-stage Demand Functions — 2SLS Estimates

Like most other hedonic price analyses involving second-stage estimation, this research relies on 

spatial variation in housing attribute price schedules to address the identification problem. The 

key difference is that, instead of using different regions as distinct housing market segments, it 

leverages spatial heterogeneity in housing attribute prices within a single region to identify the 

second-stage demand functions. With the marginal implicit price estimates from the first-stage 

hedonic price function in hand, the remaining step is to estimate a series of second-stage implicit 

demand functions corresponding to equation (2). 

The dependent variable of these equations is quantity — expressed as q̃ik , the natural log 

of distance from each environmental hazard — and the explanatory variables are the estimated 

marginal implicit price of distance, π ik , plus a set of demand shifters. Because price is ˆ 

endogenous to quantity, the demand functions must be estimated via two-stage least squares 

(2SLS) or some other instrumental variables procedure. The instruments used to do this are 

different from equation-to-equation — they are identified in Table 6, below the relevant set of 

estimates — but, in essence, one pertains to the home’s location and the other to the home itself 

with the idea that, together, they distinguish the specific transaction and, hence, its individual 

housing attribute price schedule. In each case, the validity of the two relevant instruments was 

checked by testing: (1) the null hypothesis that they are uncorrelated with their structural model’s 

error terms; and (2) the null hypothesis that their estimated parameters are jointly equal to zero in 

the first-stage of the 2SLS routine. In order to pass these two tests, respectively, the instrumental 

variables must produce a χ 2statistic of less than 3.84 and an F-statistic of greater than 3.00 — a 

20 Ali et al’s (2007) analysis deals with a somewhat simpler situation wherein the term that is decomposed is the 
product of the GWR parameters and the explanatory variables. Since marginal implicit prices are the object of interest 
here, the actual values of the GWR-estimated housing attribute price schedules first had to be backed out of the log-
transformed equations.
21 The spatial decomposition also points to circumstances where this approach is less likely to work well.  Specifically,
when the majority of the variance is derived from differences in zk rather than π ik , may yield inadequate spatial ˆ 
variation in the implicit price for second stage identification. 
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failure of either test indicates that the instruments are not valid. (See Wooldridge 2000 for 

explanations of the χ 2-test of over-identifying restrictions and the F-test of multiple linear 

restrictions.) 

The 2SLS estimates for the implicit markets for distance from air release sites, hazardous 

waste generators, hazardous waste handlers, superfund sites, and toxic release sites are listed in 

Table 6. Each of the equations register a respectable adjusted R2 — the lowest, 0.33, is for the 

hazardous waste handler equation, where the marginal implicit price of distance is different from 

zero only 52% of the time — and all of the explanatory variables are statistically significant at at 

least a 95% level of confidence. Further, the models’ instruments passed both validity tests by a 

wide margin. As a supplement to the estimation results, Table 7 lists the means of individually 

calculated (from the parameters in Table 6) price and income elasticities of demand for distance 

from the environmental hazards, across all transactions and across only those transactions located 

at less than 500 feet, between 500 and 1,000 feet, and greater than 1,000 feet from the relevant 

hazard. The following paragraphs summarize the findings. 

The top panel of Table 7 shows price elasticities calculated across all transactions, which 

are the average values in the Puget Sound region: –0.2356 for air release sites; –0.3662 for 

hazardous waste generators; –0.0186 for hazardous waste handlers; –0.3761 for superfund sites; 

and –0.1855 for toxic release sites. These results are remarkably consistent with work done by 

Brasington and Hite (2005), who also found an inelastic price elasticity of demand (–0.12) for a 

similar measure of environmental quality, distance from the nearest Ohio Environmental 

Protection Agency designated environmental hazard. In general, it is reasonable to expect high 

profile environmental hazards to not only generate large implicit price responses in the first-stage 

hedonic price function but, also, to generate large distance responses in the second-stage demand 

functions. And, for this reason, it is interesting that all of the regional price elasticities of demand 

are less than one in absolute value, indicating that demand is inelastic. Overall, this finding 

suggests that household responses are relatively stronger in the first-stage hedonic price function 

than in the second-stage demand functions — households apparently will, on average, tolerate 

proximity, with sufficient compensation. However, a much different picture emerges in the lower 

three panels of Table 7, which partition the calculations by distance: transactions located at close 

range to environmental hazards exhibit very large elasticities; transactions located at a middle 

range exhibit moderate elasticities; and transactions located at a distant range exhibit small 

elasticities. Together, these findings show that the price response grows more intense with 

proximity: household behavior is very sensitive to variation in the marginal implicit price of 

distance at close ranges. 
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Next, Table 7 also shows income elasticities of demand for each of the five hazards. 

Note, though, that interpretations of these have to be tempered by the fact that the measure of 

income is calculated at the census tract level because household-level data corresponding to the 

single-family housing sales was not available. That said, as expected, all of the elasticities that 

come out of this calculation are positive, meaning that distance from environmental hazards is a 

normal good so, other things being equal, households spend more on it as their incomes rise. As 

to how readily, the ordinal ranking of income elasticities shows: hazardous waste generators > 

hazardous waste handlers > air release sites > toxic release sites > superfund sites. And, 

interestingly, unlike the price elasticities, the income elasticities do not change much when 

partitioned by distance from the sites. 

Last, returning to Table 6, the remaining demand shifters illustrate how certain 

socioeconomic characteristics affect the quantity of distance from environmental hazards that 

households consume. The group shows that quantity is positively influenced by: the absence of 

racial minorities, measured as the percent of residents in the census tract that are white; and the 

presence of children, measured as the percent of households in the census tract with children. 

Education, measured as the percent of residents in the census tract that are college-educated, has a 

negative influence on quantity in the air release, hazardous waste handler, and toxic release 

equations, but a positive influence in the hazardous waste generation and superfund equations. 

The alternating sign pattern on education is somewhat surprising, but it may just reflect a greater 

level of awareness about the actual level of risk associated with the various hazards. In addition to 

playing their own part in the equations, the demand shifters generally have intuitive signs and 

magnitudes. This further validates the models’ interpretation as implicit demand functions for 

distance from air release sites, hazardous waste generators, hazardous waste handlers, superfund 

sites, and toxic release sites. 

4. Summary and Conclusion

This paper began by setting out three specific research objectives: (1) to define spatial 

heterogeneity in the context of housing markets and develop a strategy for using it to overcome 

the general problem of deriving the demand for non-market goods; (2) to estimate the marginal 

implicit price of distance from air release sites, hazardous waste generators, hazardous waste 

handlers, superfund sites, and toxic release sites via the single-family housing market in the Puget 

Sound region of Washington State; and (3) to estimate a series of implicit demand functions 

describing the relationship between the price of distance from environmental hazards and the 
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quantity consumed. Having met these objectives, the few remaining comments focus on some 

implications and directions for future research. 

Foremost, the strategy laid out here represents an important step forward in valuing non-

market goods because it offers a workable solution to what has always been the albatross of two-

stage hedonic price analysis. In practice, estimating demand functions with data from multiple 

regions is problematic because of the difficulty of obtaining identical datasets. In contrast, the 

approach developed here is more tractable in the sense that it requires data from only one region, 

but, that said, it does require a lot of data, plus a good degree of local knowledge. The importance 

of market knowledge on the part of the analyst should not be underappreciated because some 

danger lies in accepting the first-stage GWR parameter estimates at face value. The density 

parameter shown in Figure 3 is a prime example of what is at stake in terms of the risk of 

misinterpretation when using GWR. Knowing upfront that the influence of density cuts in both 

ways in the Puget Sound, and, also, that there exist clearly delineated housing market segments 

based on it, was key to understanding the result. Had the region been less familiar, the density 

parameter would have raised questions instead of confirming expectations. Even still, it seems to 

the present authors that GWR analysis, if thoughtfully done, represents the very best of what the 

field of regional science has to offer — innovative solutions to the many untidy problems that 

emerge from how geographic space mediates socioeconomic processes. 

Given its objectives this paper has covered significant territory. The results presented in 

the tables and figures are an excellent starting point for a more detailed welfare analysis, and 

there may also be room for refinement and re-estimation of certain of the equations. According to 

the 2005 American Housing Survey, a great number of homes in the United States are affected by 

bothersome neighborhood conditions, including odors (~3.5 million homes), unpleasant noise 

(~16.9 million homes), the presence of undesirable land uses (~0.45 million homes), and more. In 

some circumstances, it may make economic sense to address these problems, but, for public 

policies aimed at doing so to be credible, they need to be based on sound benefit-cost analyses. 

And, in order to carry out these projects in the first place, analysts must have a way to estimate 

the demand for non-market goods — in all their myriad forms. The research presented in this 

paper was motivated by the need to better understand the value of environmental quality, and it is 

one of only a handful of intraregional hedonic analyses to have produced estimates of demand for 

that commodity. The space-based strategy it has developed is proposed as a general solution to 

the long-standing problem of estimating the implicit demand for non-market goods in the hope 

that, over time, it can be used to help improve community living conditions. 
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Sign

Table 1. Descriptive statistics 
Units Min. Max. Mean Med. Std. Dev. Exp. 

Sales Price 1 Dollars 50,000.00 9,000,000.00 383,440.30 323,626.00 260,663.88 n/a 
Lot 

Size 1 Sq. feet 780.00 1,738,915.00 12,590.16 7,560.00 33,032.98 + 
Elevation Feet –20.00 2,640.00 357.49 360.00 192.94 
Percent Brick 1 Percent 0.00 100.00 3.81 0.00 17.58 n/a 

Structure 
Living Space 1 Sq. feet 360.00 12,750.00 2,207.73 2,130.00 886.09 + 
Age 1 Years 0.00 104 34.94 31.00 28.59 – 
Age2 1 Years 0.00 10,816.00 1,220.56 961.00 817.48 + 
Fireplaces 1 Count 0.00 6.00 1.19 1.00 0.71 + 

Grade 
Average 1 Binary 0.00 1.00 0.44 0.00 0.50 + 
Good 1 Binary 0.00 1.00 0.25 0.00 0.43 + 
Better 1 Binary 0.00 1.00 0.11 0.00 0.31 + 
Very Good 1 Binary 0.00 1.00 0.04 0.00 0.21 + 
Excellent 1 Binary 0.00 1.00 0.01 0.00 0.12 + 
Luxury 1 Binary 0.00 1.00 0.00 0.00 0.06 + 
Mansion 1 Binary 0.00 1.00 0.00 0.00 0.03 + 

Condition 
Average 1 Binary 0.00 1.00 0.71 1.00 0.45 + 
Good 1 Binary 0.00 1.00 0.24 0.00 0.43 + 
Very Good 1 Binary 0.00 1.00 0.04 0.00 0.20 + 

Amenities 
View 1 Binary 0.00 1.00 0.12 0.00 0.33 + 
Nuisance 1 Binary 0.00 1.00 0.13 0.00 0.34 – 
Waterfront Feet 4 Feet 0.00 1,600.00 0.92 0.00 13.93 + 

Neighborhood 
Property Tax Rate 1 Percent 0.32 2.99 1.16 1.17 0.15 – 
School Quality 4 Percent 37.88 83.60 55.77 53.75 11.67 + 
Median Income 2 Dollars 16,285.00 133,756.00 64,122.82 61,726.00 19,617.79 + 
Density 2 Units / Ac. 0.00 51.02 2.75 2.24 2.35 +/– 
% College Educated 2 Percent 1.13 43.63 18.76 18.70 7.17 n/a 
% White 2 Percent 1.72 59.18 28.13 25.61 11.82 n/a 
% w/ Children 2 Percent 10.66 96.65 78.78 83.19 15.12 n/a 

Location 
Dist. from Seattle 4 Feet 2,181.64 190,855.98 65,557.21 58,271.44 36,716.63 – 
Commute Time 2 Minutes 16.00 46.00 26.29 26.00 4.30 – 
Dist. from Arterial 4 Feet 0.14 21,292.92 1,161.09 712.76 1,399.70 + 
Outside UGB 4 Binary 0.00 1.00 0.06 0.00 0.23 +/– 
Dist. from UGB 4 Feet 27.62 88,040.18 25,088.06 21,435.22 19,666.14 +/– 
Dist. from Subcenter 4 Feet 1,195.03 131,731.37 52,793.56 53,045.32 21,212.90 n/a 

Environmental Hazards 
Dist. from Air Site 2 and 4 Feet 77.66 69,211.39 10,467.07 7,564.22 9,491.67 + 
Dist. from HWG 2 and 4 Feet 14.36 30,018.93 4,188.50 2,916.23 3,929.90 + 
Dist. from HWH 2 and 4I Feet 4.92 19,005.26 2,207.47 1,683.23 1,877.89 + 
Dist. from SF Site 2 and 4 Feet 1,088.09 149,959.83 44,253.83 39,037.09 26,585.09 + 
Dist. from TR Site 2 and 4 Feet 44.43 81,959.90 13,336.76 10,526.59 11,285.17 + 

Time Months 1.00 12.00 6.75 7.00 3.11 + 
Notes: the data sources are 1 King County Assessor; 2 U.S. Census of Population and Housing; 3 U.S. EPA; 4 author’s 
calculations, based on regional data sources; n/a denotes not applicable to first stage estimation. 

24 



Table 2. OLS and S2SLS Estimates of First-stage Hedonic Price Function
OLS S2SLS 
Est. Parameter t-value Est. Parameter t-value 

Constant 14.024460 ★★★ 243.10 11.506500 ★★★ 82.31 
Spatial Lag
Lot Size 

-
0.000001 ★★★ 

-
7.48 

0.171885 ★★★ 

0.000001 ★★★ 

19.96 
7.90 

Structure 
Size 0.000168 ★★★ 64.97 0.000159 ★★★ 63.55 
Age
Age2 

Fireplaces
Grade 

–0.004757 ★★★ 

0.000045 ★★★ 

0.013785 ★★★ 

–26.33 
22.97 
5.64 

–0.004272 ★★★ 

0.000039 ★★★ 

0.009446 ★★★ 

–24.33 
20.12 
4.07 

Average
Good 

0.099544 ★★★ 

0.214733 ★★★ 

23.16 
40.70 

0.091563 ★★★ 

0.190556 ★★★ 

22.32 
36.91 

Better 0.359716 ★★★ 51.88 0.311497 ★★★ 44.17 
Very Good
Excellent 

0.496655 ★★★ 

0.611455 ★★★ 

53.08 
39.34 

0.426844 ★★★ 

0.531379 ★★★ 

44.23 
34.22 

Luxury
Mansion 

0.855057 ★★★ 

0.889018 ★★★ 

23.94 
7.52 

0.759983 ★★★ 

0.765276 ★★★ 

22.00 
7.40 

Condition 
Average
Good 

0.120423 ★★★ 

0.161224 ★★★ 

5.57 
7.45 

0.122644 ★★★ 

0.163068 ★★★ 

6.08 
8.07 

Very Good
Amenities 

0.245634 ★★★ 10.92 0.245750 ★★★ 11.69 

View 0.147851 ★★★ 23.13 0.122340 ★★★ 21.27 
Nuisance –0.026425 ★★★ –6.69 –0.028227 ★★★ –7.50 
Waterfront Feet 0.001696 ★★ 2.12 0.001670 ★★ 2.26 

Neighborhood
Property Tax Rate
School Performance 

–0.310065 ★★★ 

0.001074 ★★★ 

–25.65 
6.43 

–0.251861 ★★★ 

0.0007131 ★★★ 

–21.81 
4.50 

Median Income 0.000002 ★★★ 23.35 0.000002 ★★★ 16.90 
Density

Location 
0.001876 ★ 1.92 0.002021 ★★ 2.20 

ln Dist. from Seattle –0.219747 ★★★ –54.92 –0.178730 ★★★ –41.82 
ln Commute Time –0.200077 ★★★ –16.14 –0.157912 ★★★ –13.12 
ln Dist. from Arterial 0.011131 ★★★ 8.53 0.008788 ★★★ 7.15 
Outside UGB 0.015927 ★ 1.88 0.002257 n/s 0.28 
ln Dist. from UGB 0.011901 ★★★ 12.12 0.011720 ★★★ 12.61 

Environmental Hazards 
ln Dist. from Air Site 0.013267 ★★★ 5.78 0.009219 ★★★ 4.17 
ln Dist. from HWG 0.015881 ★★★ 7.83 0.011305 ★★★ 5.90 
ln Dist. from HWH 0.005435 ★★★ 2.80 0.003017 ★ 1.64 
ln Dist. from SF Site 0.055713 ★★★ 27.58 0.045277 ★★★ 22.75 
ln Dist. from TR Site 0.014695 ★★★ 7.09 0.014501 ★★★ 7.28 

Time 0.009646 ★★★ 26.46 0.009640 ★★★ 27.90 
n 29,165 29,165 
Adjusted R2 0.83 0.85 
AIC –3.36 –3.47 
Notes: all models were estimated using White-adjusted standard errors; all hypothesis tests are two-tailed; ★★★ denotes 
at p < 0.01; ★★ denotes significant at p < 0.05; ★ denotes significant at p < 0.10; n/s denotes not significant. 
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Table 3. GWR Estimates of First-stage Hedonic Price Function
Est. Parameters w/ t-value ≥ 1.96 
Pct. Min. Max. Mean Med. Std. Dev. 

Constant 100% 12.934200 15.022930 14.035734 14.065230 0.518073 
Lot Size 100% 0.000001 0.000003 0.000002 0.000002 0.000001 
Structure 

Size 100% 0.000157 0.000170 0.000164 0.000165 0.000003 
Age 100% –0.006139 –0.003145 
Age2 100% 0.000032 0.000064 
Fireplaces 100% 0.009770 0.025852 

Grade 

–0.004633 
0.000043 
0.015115 

–0.004953 
0.000043 
0.013870 

0.000759 
0.000007 
0.004149 

Average 100% 0.052672 0.110494 
Good 100% 0.161429 0.238759 

0.090252 
0.207246 

0.094257 
0.210151 

0.014858 
0.020681 

Better 100% 0.311483 0.399205 0.358701 0.362428 0.023446 
Very Good 100% 0.443996 0.570643 
Excellent 100% 0.548801 0.695969 

0.503014 
0.622102 

0.504260 
0.628828 

0.033575 
0.036310 

Luxury 100% 0.763465 1.034255 
Mansion 100% 0.568349 1.124774 

0.832570 
0.862671 

0.818349 
0.884431 

0.039997 
0.188754 

Condition 
Average 85% 0.033365 0.197207 
Good 94% 0.038647 0.242701 

0.116507 
0.147630 

0.117058 
0.152155 

0.039385 
0.047948 

Very Good 100% 0.118119 0.328626 
Amenities 

0.224447 0.230261 0.051779 

View 100% 0.114954 0.163121 0.138761 0.136622 0.010441 
Nuisance 69% –0.045912 –0.009888 –0.031308 –0.033447 0.012706 
Waterfront Feet 100% 0.000601 0.010182 0.004838 0.004119 0.003204 

Neighborhood
Property Tax Rate 100% –0.449045 –0.108765 
School Performance 73% 0.040687 0.294293 

–0.285579 
0.172156 

–0.300377 
0.192934 

0.822333 
0.058232 

Median Income 100% 0.000001 0.000003 0.000002 0.000002 0.000001 
Density 74% –0.013430 0.007248 

Location 
–0.000400 0.003253 0.006429 

ln Dist. from Seattle 100% –0.306197 –0.168900 –0.227372 –0.219436 0.031720 
ln Commute Time 100% –0.323754 –0.101852 –0.210556 –0.190880 0.055599 
ln Dist. from Arterial 100% 0.005794 0.014971 0.010285 0.010678 0.002506 
Outside UGB 89% –0.154739 0.056363 –0.047142 –0.047843 0.054555 
ln Dist. from UGB 94% 0.003383 0.035998 0.016473 0.012561 0.009277 

Environmental Hazards 
ln Dist. from Air Site 79% –0.008454 0.026178 0.016356 0.016385 0.005803 
ln Dist. from HWG 100% 0.010639 0.021478 0.014780 0.014065 0.002953 
ln Dist. from HWH 52% –0.007666 0.010748 0.006310 0.006331 0.002376 
ln Dist. from SF Site 100% 0.041832 0.095047 0.062731 0.065954 0.011162 
ln Dist. from TR Site 82% –0.010813 0.034760 0.018846 0.020163 0.006685 

Time 100% 0.009167 0.010923 0.009837 0.009780 0.000361 
n 
Overall Adj. R2 

AIC 

29,165 
0.83 

–3.46 
ANOVA — Comparing GWR to OLS

Sum of Squared Errors Degrees of Freedom Mean Square F-value p-value
OLS Residuals 1,011.40 34.00 
GWR Improvement 96.70 63.96 1.51 
GWR Residuals 914.60 29,067.04 0.03 48.05 0.00 
Notes: these estimates are based on an adaptive spatial bandwidth encompassing a constant 70% of the dataset, 20,416 
location-specific observations; the ANOVA test (Brundson et al 1999) rejects the null hypothesis that there is no 
heterogeneity in the GWR parameter estimates. 
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Table 4. Dollar Value of Estimated Marginal Implicit Prices and Total Implicit Expenditures
Marginal Implicit Prices
Mean St. Dev. 

Total Implicit Expenditures
Mean St. Dev. 

Lot Size 
Structure 

$0.70 $0.71 $8,406.09 $24,045.46 

Living Space
Age
Age2 

Fireplaces
Grade 

$62.90 
–$1,754.78 

$16.64 
$5,986.93 

$42.59 
$1,119.61 

$11.04 
$4,886.82 

$163,023.33 
–$52,829.16 

$29,046.86 
$8,405.18 

$228,717.77 
$59,456.95 
$48,481.47 
$24,045.37 

Average
Good 
Better 
Very Good
Excellent 
Luxury
Mansion 

Condition 

$33,629.99 
$78,047.71 

$136,915.94 
$191,825.20 
$237,531.71 
$316,905.80 
$319,482.08 

$22,383.97 
$51,495.51 
$94,771.48 

$131,978.54 
$163,550.24 
$211,132.04 
$198,249.97 

$163,022.93 
–$52,827.48 

$29,046.82 
$16,718.13 
$9,603.87 
$5,543.95 
$1,496.33 

$228,721.68 
$59,457.27 
$48,482.30 
$89,303.25 
$90,478.65 

$108,670.02 
$62,842.21 

Average
Good 
Very Good

Amenities 

$34,365.95 
$49,606.83 
$82,851.13 

$30,250.69 
$39,402.43 
$56,868.62 

$23,237.98 
$12,575.74 
$4,407.38 

$29,176.70 
$28,470.64 
$28,766.29 

View 
Nuisance 
Waterfront Feet 

Neighborhood
Property Tax Rate
School Quality
Median Income 
Density

Location 

$53,636.64
–$9,380.29 
$1,993.79 

–$106,445.45 
$448.77 

$0.91 
–$344.13 

$36,924.70
$12,141.71 
$2,476.74 

$78,875.29 
$456.95 

$0.75 
$2,798.84 

$10,558.82
–$1,524.71 
$4,948.66 

–$120,727.44 
$27,362.81 
$62,128.94 
$2,142.21 

$37,511.25
$5,789.46 

$106,889.19 

$78,361.76 
$31,912.01 
$71,100.73 
$9,502.09 

ln Dist. from Seattle 
ln Commute Time 
ln Dist. from Art. 
Outside UGB 
ln Dist. from UGB 

Environmental Hazards 

–$2.31 
–$3,490.57 

$12.53 
–$18,461.47 

$1.25 

$4.01 
$3,670.97 

$109.66 
$28,900.34 

$6.08 

–$88,314.46 
–$84,441.60 

$4,124.37 
$46.08 

$6,091.82 

$62,552.81 
$71,453.49 
$3,325.41 
$2,697.81 
$7,061.20 

ln Dist. from Air 
ln Dist. from HWG 
ln Dist. from HWH 
ln Dist. from SF 
ln Dist. from TR 

Time 

$1.19 
$3.04 
$0.99 
$0.90 
$0.79 

$3,792.71 

$2.11 
$5.81 
$3.91 
$1.14 
$1.37 

$2,694.17 

$5,360.65 
$5,758.58 
$1,070.25 

$24,686.45 
$5,722.16 

$25,939.31 

$5,507.51 
$4,717.62 
$1,640.65 

$18,605.04 
$5,607.65 

$24,353.00 
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Table 5. Spatial Decomposition of Total Implicit Expenditures 
Variance ( zk ) Variance ( π̂ ik ) Covariance ( zk , π̂ ik ) 

Lot Size 63.55% 36.84% –0.39% 
Structure 

Size 21.07% 47.74% 31.19% 
Age
Age2 

Fireplaces
Grade 

70.04% 
72.86% 
31.74% 

50.52% 
36.33% 
48.56% 

–20.55% 
–9.19% 
19.71% 

Average
Good 

74.11% 
70.47% 

40.40% 
28.59% 

–14.52% 
0.94% 

Better 69.85% 25.42% 4.72% 
Very Good
Excellent 

71.59% 
73.44% 

24.07% 
23.98% 

4.34% 
2.58% 

Luxury
Mansion 

75.32% 
77.88% 

23.24% 
21.67% 

1.44% 
0.45% 

Condition 
Average
Good 

42.11% 
65.29% 

63.61% 
33.19% 

–5.71% 
1.52% 

Very Good
Amenities 

73.98% 24.69% 1.33% 

View 67.60% 24.83% 7.58% 
Nuisance 57.22% 41.19% 1.59% 
Waterfront Feet 61.91% 37.73% 0.36% 

Neighborhood
Property Tax Rate
School Performance 

4.61% 
6.57% 

104.94% 
79.69% 

–9.55% 
13.74% 

Median Income 15.39% 72.80% 11.82% 
Density

Location 
31.26% 72.90% –4.16% 

ln Dist. from Seattle 0.53% 103.69% –4.22% 
ln Commute Time 0.49% 104.42% –4.91% 
ln Dist. from Arterial 2.80% 97.87% –0.68% 
Outside UGB 58.26% 43.84% –2.10% 
ln Dist. from UGB 2.25% 100.61% –2.85% 

Environmental Hazards 
ln Dist. from Air Site 1.28% 105.33% –6.60% 
ln Dist. from HWG 1.57% 104.86% –6.43% 
ln Dist. from HWH 1.21% 100.46% –1.67% 
ln Dist. from SF Site 0.90% 106.90% –7.81% 
ln Dist. from TR Site 1.11% 104.32% –5.44% 

Time 33.31% 63.85% 2.84% 
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Table 6. 2SLS Estimates of Second-stage Implicit Demand Models
Dist. from Air Release Site Dist. from HWG 
Est. Parameter t-value Est. Parameter t-value 

Dist. from HWH 
Est. Parameter t-value 

Dist. from Superfund Site
Est. Parameter t-value 

Dist. from Toxic Release Site 
Est. Parameter t-value 

Constant 7.603317 ★★★ 353.95 6.742505 ★★★ 296.41 6.023883 ★★★ 302.44 9.066443 ★★★ 135.24 7.829389 ★★★ 313.51 
Marginal Implicit Price
Median Household Income 

–0.197285 ★★★ 

0.000005 ★★★ 

–34.27 
12.83 

–0.120608 ★★★ 

0.000013 ★★★ 

–31.72 
22.89 

–0.018835 ★★★ 

0.000007 ★★★ 

–3.50 
12.27 

–0.416738 ★★★ 

0.000001 ★ 

–17.23 
1.84 

–0.233590 ★★★ 

0.000003 ★★★ 

–25.21 
5.90 

% College Educated
% White 

–0.017299 ★★★ 

0.011569 ★★★ 

–18.96 
42.10 

0.004696 ★★★ 

0.004837 ★★★ 

4.20 
19.63 

–0.013220 ★★★ 

0.008077 ★★★ 

–12.21 
25.11 

0.011848 ★★★ 

0.025054 ★★★ 

20.13 
35.22 

–0.019962 ★★★ 

0.014210 ★★★ 

–21.97 
43.73 

% w/ Children 
n 

0.022220 ★★★ 34.17 
29,165 

0.009684 ★★★ 11.28 
29,165 

0.022172 ★★★ 29.84 
29,165 

0.009986 ★★★ 8.11 
29,165 

0.022552 ★★★ 37.30 
29,165 

Adjusted R2 

AIC 
0.57 

–1.15 
0.44 

–0.86 
0.33 

–0.85 
0.64 

–1.57 
0.50 

–1.07 
Instruments 
ln Dist. from Seattle ✩ ln Dist. from Seattle ✩ ln Dist. from Subcenter ✩ ln. Elevation ✩ ln Dist. from Subcenter ✩ 

χ2-value 
Fireplaces ✩ 

0.15 
% Brick ✩ 

1.49 
% Brick ✩ 

0.09 
% Brick ✩ 

1.02 
Nuisance ✩ 

2.01 
F-value 382.32 244.55 111.59 129.34 245.05 
Notes: all models were estimated using White-adjusted standard errors; all hypothesis tests are two-tailed; ★★★ denotes at p < 0.01; ★★ denotes significant at p < 0.05; ★ denotes 
significant at p < 0.10; n/s denotes not significant; all models have one over-identifying restriction, so the critical value to reject the null hypothesis that the instrumental variables 
are exogenous p < 0.05 is 3.84; ✩ denotes valid instrument; distance from subcenter is the distance, in feet, to Bellevue, Everett, or Tacoma, whichever is closer; elevation is the 
level, in feet, above sea-level; percent brick is the percentage of the home’s exterior composed of brick. 
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Table 7. Estimated Price and Income Elasticities of Demand for Distance from Environmental Hazards 
Average — All Transactions 

Dist. from Air Site 
Price Elasticity

–0.2356 
Income Elasticity

0.3277 
Dist. from HWG –0.3662 0.8592 
Dist. from HWH –0.0186 0.4700 
Dist. from SF Site –0.3761 0.0795 
Dist. from TR Site –0.1855 0.1635 
Average — Transactions < 500 Feet from Hazard

Price Elasticity
Dist. from Air Site –3.4596 

Income Elasticity
0.2551 

Dist. from HWG –2.6502 0.6838 
Dist. from HWH –0.0990 0.3924 
Dist. from SF Site –15.0729 0.0383 
Dist. from TR Site –3.1517 0.1206 
Average — Transactions 500 – 1,000 Feet from Hazard

Price Elasticity
Dist. from Air Site –1.5578 

Income Elasticity
0.2427 

Dist. from HWG –0.9982 0.6930 
Dist. from HWH –0.0317 0.4004 
Dist. from SF Site –8.0391 0.0383 
Dist. from TR Site –1.1807 0.1175 
Average — Transactions >1,000 Feet from Hazard

Dist. from Air Site 
Price Elasticity

–0.2126 
Income Elasticity

0.3287 
Dist. from HWG –0.2487 0.8785 
Dist. from HWH –0.0098 0.4898 
Dist. from SF Site –0.3738 0.0795 
Dist. from TR Site –0.1736 0.1639 
Notes: All elasticities we calculated at the mean values of the regressors after filtering observations by relevant 
conditions; n/a denotes not applicable; n/s denotes not significant in demand equation. 

30 



Figure 1. Natural Log of Sales Price of Single- Figure 2. GWR Error Terms 
family Homes, 2004


Figure 3. Estimated Influence of Density in the Figure 4. Dollar Value of Estimated Marginal
First Stage Hedonic Price Function Implicit Price of Distance from Air Release Site 
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Figure 5. Dollar Value of Estimated Marginal Figure 6. Dollar Value of Estimated Marginal
Implicit Price of Distance from HWG Site Implicit Price of Distance from HWH Site 

Figure 7. Dollar Value of Estimated Marginal Figure 8. Dollar Value of Estimated Marginal
Implicit Price of Distance from Superfund Site Implicit Price ( π̂ ik ) of Distance from Toxic

Release Site 
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